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Abstract

This paper deals with impulsive fractional differential inclusions with a fractional order multi-point
boundary condition and with fractional order impulses. By use of multi-valued analysis and topological
fixed point theory, we present some existence results under both convexity and nonconvexity conditions
on the multi-valued right-hand side. The compactness of the solutions set and continuous version of
Filippov’s theorem are also investigated.
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1 Introduction

In recent years, the theory of fractional differential equations has been an object of increasing interest
because of its wide applicability in biology, in medicine and in more and more fields, see for instance
[4, 14, 15, 16, 17, 26, 28, 34, 35, 36] and references therein. In particular, Tian [35] studied the existence
of solutions for equation

Du(t) = f(t,u(t), a.eteJ,

Au(t)|t:tk = I;_C(u(tk Y, k=1,2,---,m,
A (t)]e=t), = Ir
u(0) + v’ (0) =0

By use of Banach’s fixed point theorem and Schauder’s fixed point theorem, the authors obtained some
existence results.

On the other hand, realistic problems, arising from economics, optimal control, etc., can be modeled
as differential inclusions. So, differential inclusions have been widely investigated by many authors, see,
for instance [1, 6, 12, 18, 19, 20, 21, 22, 23, 25, 32, 33] and references therein.

To the best of our knowledge, there are few papers concerning fractional-order impulsive differential
inclusions with a multi-point boundary condition. Motivated by works mentioned above, we consider the
following problem:

Du(t) € F(t,u(t), a.etéeJ (1.1)

Au(t)|t:tk = Ik(u(tk))a k= 15 27 T, My (12)
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ACDﬁu(t”t:tk = fk(u(tk))ak = 152a"' , M, (13)
u(0) +°DPu(0) = A, u(1) +°DPu(¢) = B, (1.4)

where “D® is the Caputo fractional derivative, and F : J x R — P(R) is a multi-valued map with
compact values (P(R) is the family of all nonempty subsets of R). 1 <a <2,0< 8 <a—1, A B are
real numbers. J = [0,1],0 =ty < t1 <+ <ty < tmy1 = 1,0 < & < tp, & # tx(k = 1,2,--- ;m).
I, Iy € CR,R], Au(t)|i=t, = u(ty) — ulty ), ADPu(t)|t=t, =“DPu(t}) —DPul(ty), u(t]) and u(ty)
represent the right-hand limit and the left-hand limit of the function u(t) at t = t.

Our goal in this paper is to give some existence results and continuous version of Filippov’s theorem for
fractional differential inclusion (1.1)-(1.4), where the right-hand side is either convexity or nonconvexity.
Furthermore, we prove that the set of solutions is compact under suitable conditions in Theorem 3.1.
Our work complement and extend some results of [35].

The remainder of this paper is organized as follows. In Section 2, we introduce some notations,
definitions, preliminary facts about the fractional calculus and an auxiliary lemma, which are used in the
next two sections. In Section 3, we give the existence of solutions under both convexity and nonconvexity
conditions on the multi-valued right-hand side. The compactness of the solutions set is also established.
Finally, we give a continuous version of Filippov’s theorem in Section 4.

2 Preliminaries

We now introduce some notations, definitions, preliminary facts about the fractional calculus and an
auxiliary lemma, which will be used later.

Let AC'(J,R) be the space of functions u : J — R, differentiable and whose derivative, u/, is absolutely
continuous. And let C'(J,R) be the Banach space of all continuous functions from J into R with the usual
norm

[Ylloo = supfly(t)] : t € J}.

L'[J,R] denote the Banach space of measurable functions y : J — R which are Lebesgue integrable; it is
normed by

1
Iyl = / ly(s)]ds.

Definition 2.1. The fractional (arbitrary) order integral of the function v(t) € L*([0,00),R) of u € R
is defined by

I*o(t) = ﬁ/o (t — s)*"tu(s)ds, t > 0.

Definition 2.2. The Riemann-Liouville fractional derivative of order u > 0 for a function v(t) given in
the interval [0, 00) is defined by

L 4 yn t — )" Ly(s)ds
T ) [ =

provided that the right hand side is point-wise defined. Here n = [u] + 1 and [u] means the integral part
of the number u, and I is the Euler gamma function.

D*u(t) =

We observe an alternative definition of fractional derivative, originally introduced by Caputo [7, §]
in the late 1960’s and adopted by Caputo and Mainardi [9] in the framework of the theory of Linear
Viscoelasticity (see a review in [30]).

EJQTDE, 2011 No. 11, p. 2



Definition 2.3. The Caputo fractional derivative of order p > 0 for a function v(t) given in the interval
[0,00) is defined by
1

e E— t — s)" (M (g)ds

provided that the right hand side is point-wise defined. Here n = [u] + 1 and [p] means the integral part
of the number u, and I" is the Euler gamma function.

CD“v(t) =

This definition is of course more restrictive than the Riemann-Liouville definition, in that it requires
the absolute integrability of the derivative of order n. Whenever we use the operator “D* we (tacitly)
assume that this condition is met. The following properties of the fractional calculus theory are well
known, see, e.g., [27, 34, 36].

(i) DPIPv(t) = v(t) for a.e. t € J, where v(t) € L'[0,1], 3 > 0.

(ii) I? DPu(t) = v(t) — Z;Zg c;t! for a.e. t € J, where v(t) € L'0,1], 3> 0, ¢;j(j =0,1,---n—1)
are some constants, n =[] + 1.

(iii) 1% : C[0,1] — C[0,1], I# : L'[0,1] — L'[0,1], B > 0.

(iv) DPIY = 178 and DP1=0fort € J, a — 3 > 0.

More details on fractional derivatives and their properties can be found in [27, 34].

Let (X, - ||) be a separable Banach space, and denote

PX)={Y CX:Y # o},

Peo(X) ={Y € P(X) : Y convex},
Pua(X)={Y € P(X) : Y closed},
Po(X) ={Y € P(X) : Y bounded},
Pep(X) ={Y € P(X) : Y compact},
PC%C;D(X) = PCU(X) n PCP(X)‘

A multi-valued map G : X — P(X) has convex (closed) values if G(x) is convex (closed) for all z € X.
G is bounded on bounded sets if G(B) = UyepG(x) is bounded in X for any bounded set B of X (i.e.
sup,e p{supf{lu| : u € G(2)}} < +00).

The map G is upper semi-continuous (u.s.c.) on X if for each xy € X the set G(zg) is a nonempty,
closed subset of X, and if, for each open set N of X containing G(zy), there exists an open neighborhood
M of g such that G(M) C N.

Likewise, G is lower semi-continuous (l.s.c.) if G : X — P(X) be a multi-valued operator with
nonempty closed values, and if, the set {x € X : G(z) N B # &} is open for any open set B in X.

G is completely continuous if G(B) is relatively compact for every bounded subset B C X.

If the multi-valued map G is completely continuous with nonempty compact values, then G is u.s.c.
if and only if G has a closed graph (i.e. &, — Zx, Yn — Y, Yn € G(zy,) imply y. € G(x4)).

We say that G has a fixed point if there exists € X such that z € G(z).

A multi-valued map G : J — Py(X) is said to be measurable if for each x € X the function
Y : J — R* defined by Y (t) = d(z,G(t)) = inf{||z — z|| : 2 € G(t)} is measurable.

Let K be a subset of [0,1] x R. K is £ ® B measurable if K belongs to the o-algebra generated by
all sets of the form J x D where J is Lebesgue measurable in [0, 1] and D is Borel measurable in R. A
subset K of L' ([0, 1], R) is decomposable if for all u,v € K and J C [0, 1] measurable, ux,, +vx e K,

U,l]—J
where X stands for the characteristic function.

Definition 2.4. The multi-valued map F : J x X — P(X) is L*-Carathéodory if
(i) t — F(t,u) is measurable for each u € X;

(i) uw — F(t,u) is upper semi-continuous for almost all t € J;

(iii) For each q > 0, there exists ¢4 € L*(J,RT) such that

1E(, w)|[p = sup{[[v] : v € F(t,u)} < (1),
for all ||u]| < ¢ and for almost all t € J.
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For any u € C([0,1],R), we define the set
Spu={ve L'(J,R) : v(t) € F(t,u(t)) for a.e. t € J}.

This is known as the set of selection functions.
For the sake of convenience, we introduce the following notations.
Let Jo = [0,¢1], Jk = (tk,trt1], k = 1,2, -+ ,;m and and let uy be the restriction of a function u to J.
C(J) ={u:[0,1] = Rlu € C(Jg,R), u(t{) and u(t;) exist, and u(t;) = u(ty),k = 0,1,--- ,m}.
PC(Jg) ={u:u € C(Jy,R) and u(t]) exists}, k =0,1,--- ,m.
Obviously, PC(J) is a Banach space with the norm |u|| pc = max{||u||pc, : kK = 1,2,--- ,m}, where
lullpe, = suptly(®)] - ¢ € [te, b}

Definition 2.5. A function u € PC(J)N ;o AC* (J,R) is said to be a solution of (1.1)-(1.4) if there
exists v € LY(J,R) with v(t) € F(t,u(t)) for a.e. t € J such that u satisfies the fractional differential
equation “D*u(t) = v(t) a.e. on J, and the condition (1.2), (1.8) and (1.4).

Lemma 2.1. Let v € LY(J,R). £ € (t;,t141),1 <1 < m —1, and [ is a nonnegative integer. 1 < a <
2,0< 8 <a—1, A, B are real numbers. Then u is the unique solution of the boundary value problem

Du(t) =v(t), aeteJt#ty,k=1,2---,m,

Au(t)lt:tk = Ik(ugtk))a (2 1)
A%ﬁu(t)h:tk = Ig(u(ty)),k=1,2,--- ,m, ’
u(0) +°DPu(0) = A, u(1) +°DPu(¢) = B,
if and only if
k
u(t) =t Ji, (6= ) Mo(s)ds + 1 ; It — 8)* tu(s)ds
-T2 - )z“;;; 1)’ Ji (i — s)2 P u(s)ds (2.2)

(2 t—t t B
(tk+1( tkﬁ))l B Ig(afkﬂ)) t:+l (thrl - S) B 1'U(S>ds
+]Ik,A,B(u)at € Jk;k = 0315' T, — 1)

and
ult) = iy S (0= ) ol
+(L t{th (t; — s)* Lu(s)ds
~T(a)l (276);:1%%5)# (t; — s D‘*ﬂ*lv(s)ds} (2.3)
iy UL 1 1ol + ey (6 1ty
(€=t)'"? T(a) tl“(tlﬂ—s)o‘ B 1 v(s)ds}

T (ti—t)T P T(a=B) Ji
‘HIm,A,B(U)vt € JIm,

where

k

Iy,a,5(u)= —I'(2-0) Z (ti — tio1) L (u(ts) + A + ih(U(ti))
Wml( (tes1) k= 0,1, ,m =1,
Ln,a,p(u) = —155T(2 — B) Z (ti — ti1)  Li(u(t:)) (2.4)

=1

A(1— B(t—tm _t X
+ 1(—tnf) + it—tin : + 11—7:; > Li(u(ts))

1
B —t)1-8 =
it e T (i),
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Proof. Suppose that u is a solution of (2.1), we have

u(t) = I%(t) — cp — dot = L /t(t — 5)* " t(s)ds — co — dot, t € Jo, (2.5)
I'(a) Jo
for some ¢y, dy € R. Then
DPu(t) = 1 /t(t — 5)* P 1y(s)ds — doﬁ,t € Jo. (2.6)
L= B) Jo I'2-p)

If t € J1, we have
u(t) — F o) j; (t — ) Lo(s)ds — c1 — di(t — t1),
a—B— t—t1)' P
Pult) = mag i, (t = 5)* P u(s)ds — di Mgl
for some c¢1,d; € R. Thus

= F(a) f t1 —5)* to(s)ds — co — doti,
(t+) = —C1,
_ t1 a—B— -8
Du(ty) = ﬁ o (t1 = 8)* P lu(s)ds — do%,
DPu(t]) = 0.

In view of Au(t)|i=¢, = I1(u(t1)), ADPu(t)|s=¢, = L (u

=

t1)), we have

(1)),

(
:F(a)f tfsal()dS*CO*dotlJrh( 1)
= (u(t).

~do = ~EEP kg fo' (1 — )P (s)ds -

(

Hence, we obtain

u(t) = ﬁ fttl t—s)* Lu(s)ds + ﬁ fotl(tl —s)* Ly(s)ds
7007d0t1+11(u(t1)) dl(tftl),te Jl,
—do = — 2= gy o (t = )20 o(s)ds — FEER L (u(t).

Repeating the process in this way, one has
k
t a7 ts a—
u(t) = —F(la) i, (=) tu(s)ds + —F(la) Z Joo (i = 5)*o(s)ds

—CO—Zdz 1(ti =tz +ZI( (t:)) — di(t = tx),

(2.7)
teJkak_laQa"'a m,
_ r@2-p) a—
i =~ L (=) el
WI (U(t )),Z = 1,2,' . ,I{/’.
By (2.5), (2.6) and the boundary condition u(0) +¢DPu(0) = A, we can obtain —cy = A.
On the other hand, by (2.7), we have
ft (1 —s)*"tu(s)ds
—l—F(a) Z ft (ti — s)* tu(s)ds
u(1) = m
+A— ; di—1(ti —ti—1) + ;L(U(tz)) (2.8)
—dm (1 = tm),

I
ﬁf (u(t; ))J* 1,2,---,m,

(2 oz _
—d; 1= { (tw_iz 1B)Z ﬁF(a )j;f t _S B 1U(S)d8
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and

D) = ﬁ /:(g )BTy (s)ds — dl%. (2.9)
By (2.8), (2.9) and the boundary condition u(1) 4+ ©Dfu(€¢) = B, we get
B-A-tt5 Ji (1= s)*Lu(s)ds
S i S (= 5)*To(s)ds
4T(2— ) f:;l (Lt [0 (g — )ALy s)ds
—dpy = (2.10)

T )+t — i) L(u(t)} - Z: L(u(t;))

—m j;f(g —8)* B Ly(s)ds

—¢,)1-8 i1 .
+(t5i1121)1*5 F(ozl—ﬁ) ftlLJr (tlJrl - 5) B 1’U(S)d8

S \T-8 _
et T (u(tin).

In sum, we get (2.2) and (2.3).
Conversely, we assume that u is a solution of the integral equation (2.2) and (2.3). In view of the
relations “DP1Pv(t) = v(t) for B > 0, we get

Dou(t) =v(t), aete Jt#tpyk=1,2--- m.
Moreover, it can easily be shown that
Au()l=t, = Ii(u(tr)), AD u(t)1=r, = T(ulty)) k= 1,2,--- ,m

and u(0) +¢DPu(0) = A, u(1) +9DPu(¢) = B. The proof is completed. O

3 Existence results

3.1 Convex case

In this subsection, by means of Bohnenblust-Karlin’s fixed point theorem, we present a existence result
for the problem (1.1)-(1.4) with convex-valued right-hand side. For this, we give some useful lemmas.

Lemma 3.1. (see [29]) Let X be a Banach space. Let F : J x X — Pepev(X) be an L'-Carathédory
multi-valued map, and let © be a linear continuous mapping from L*(J, X) to C(J, X). Then the operator

©0Sp:C(J,X) = Pep,ev(J, X), v— (©0SF)(v) :=0(SF)
is a closed graph operator in C(J, X) x C(J, X).

Lemma 3.2. (see [2, Bohnenblust-Karlin]) Let X be a Banach space, D a nonempty subset of X, which
is bounded, closed, and convex. Suppose G : D — P(X) is u.s.c. with closed, convex values, and such

that G(D) C D and G(D) compact. Then G has a fized point.

Lemma 3.3. (Mazur’s Lemma, [31, Theorem 21.4]). Let E be a normed space and {zp}tren C F
a sequence weakly converging to a limit x € E. Then there exists a sequence of convex combinations
Uy, = Zzlzl AmkXk, where amy >0 for k=1,2,--- ,m, and Zzlzl ami = 1, which converges strongly to
x.

Then our main contribution of this subsection is the following.
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Theorem 3.1. Suppose the following hold:

(A1) The function F : J X R — Py p(R) is L'-Carathéodory,

(A2) There exist a function p € L'(J,R) and a continuous nondecreasing function ¥ : [0,00) — [0, 00)
such that

|1E (@, 2)||lp < p()¥(|z]) for a.e. t € J, and each z € R,

with  lim M:O,
z—+oo T

(A8) There exist constants L1, Ly > 0 such that
|Ii(u)| < L1, [Ix(u)| < Lo, for alu e R,k=1,2,---,m
Then the set of solutions for Problem (1.1)-(1.4) is nonempty and compact.

Proof. We can transform the problem into a fixed point problem. The proof consists of three parts, with
the first part involving multiple steps.
Part 1. Define
h € PC(Jo) : h(t) = F(a) fo (t — s)*Lo(s)ds
No(w) = { ~Ta=g)n Jo' (b = )77 u(s)ds , (3.1)
+A— F(f,ﬁ)t (u(tl)),t e Jy

1

where v € Spq, = {v € LY (J,R) : v(t) € F(t,u(t)) for a.e. t € Jo}. Next we shall show that Ny satisfies all
the assumptions of Lemma 3.2, and thus Ny has a fixed point. For the sake of convenience, we subdivide
this part into several steps.

Step 1. Ny(u) is convex for each u € PC(Jy).

Indeed, if hy, he € No(u), then there exist vy, ve € SF ., such that for j = 1,2

t):ﬁfot(t—s) v;(s)ds — TE=0) 0 Bty — s)*=B= 1o, (s)ds

T(a—B) 7
+A-— %Jl(u(tl)).

Let 0 < A < 1. Then for each t € Jy, we have

o1+ (1= Nho](t) = 57 Jy (¢ — ) cH[Aul + (1= A\)va](s)ds

7%1{ 7 Jo "t — )Y 1[>‘Ul + (1= A)wa](s)ds

+A = FER L (u(t)).

Since Sp,, is convex (because F' has convex values), we obtain [Ahy + (1 — A)hg] € No(u).

Step 2. For each constant r > 0, let B, = {u € PC(Jy) : ||u||pc, < r}. Then B, is a bounded closed
convex set in PC(Jy). We claim that there exists a positive number Ry such that No(Bg,) C Bg,-

Let u € PC(Jy) and h € No(u). Thus there exists v € Sg,, such that

t a— «
h(t) = ey Jo (£ = 9)* " 0(s)ds — Tz wrta Jy' (b — )~ u(s)ds
+A = TEZB1 T (u(t)).
1
And so

_ a rti
h(®)] < ¥ ([[ullpeo{ (ay +%)tl o P(s)ds}
+|A[+T(2 - ﬂ)t L,.

Immediately,

a [t
IR < W (llullpe){ (may + F(F(Qgi’l))tl o P(s)ds} (3.2)
+|A| +T(2 = B)t7 Lo.
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Since lim @ = 0 by (A2), there exists a sufficiently large number Ry > 0, such that

Tr——+00

_ a [t
Ry > W(Ro){ (57 + riegiiy 15 Jy ' p(s)ds}

+|A| 4+ T2 = )t Ly.
which together with (3.2) imply that

[ No(u)|lp < Ro, when |[ul|pc, < Ro.

We have shown that No(Bg,) C Br,-
Step 3. No(Bg,) is equi-continuous on Jp.
Let u € Bg, and h € No(u). Thus there exists v € Sp ., [v(s)| < p(s)¥(Rp) such that,

t a—
W (t) = wa=y Jo (t —5)*72 ()ds—%tlla o (t1—8)* "~ lu(s)ds
—ngfﬁl(u(tl)).

So

IW(6)] < W(Ro){ s [ pls)ds + 2ot [1i
< Mg, (a constant).

As a consequence of Steps 1-3 together with the Ascoli-Arzela theorem, we can conclude that Ny is
compact valued map.

Step 4. Ny has closed graph.

Let h, € No(up), and hy, — hy, u, — ux as n — oo. We will prove that h, € No(us). hy, € No(up)
implies that there exists v,, € Sg,,, such that for ¢ € Jy

hn(t) = ey Jo(t = 9)° M on(s)ds — Fa=5 o Jo' (= 9)* 77" o (s)ds
+A - nggﬁn(un(tl)).

We must show that there exists v, € Sf,, such that for each t € Jy,

t1 a—B—
ha(t) = 57 Jo (8 = 5)° 7 ou(s)ds — 1= ot o (= 5) 7 vu(s)ds
+A = FELL (u, (1))

1

(3.3)

Consider the continuous linear operator

O : L'(Jp, )HPC’(JO, R), v O(v)(1),
O(v)(t) = 15y Jot = s)*"tu(s >dsf£§§:§?> Lo [t — 5)2 0 u(s)ds

Clearly, by the continuity of Iy, I(k — 1,2,--- ,m), we have
[ (t) — A+ %E (un(t1)) = {ha(t) — A+ %E(u*(h))}llpcn —0
as n — 00.

From Lemma 3.1 it follows that © o Sg,, is a closed graph operator. Moreover, we have
hn(t) — Hk,A,B(Un) S G(SF,un)-

Since 4, — s, Lemma 3.1 implies that (3.3) hold for some v, € Sp,, .
Therefore, Ny are compact multi-valued map, u.s.c., with convex closed values. As a consequence of
Lemma 3.2, we deduce that Ny has a fixed point u, o.
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Part 2. Define
h e PC(Jy): h(t) = 1 N j;t t —s)* lo(s)ds

%ant% f (ta — 5)* P~ u(s)ds
Ny (u) := r2-p)t af1 (3.4)
— e Jo (b = 5) vo(s)ds

+1ty Jo (1 — )2 o (s)ds + T a,p(u), t € i,
where

Liap(u) = —T(2 - B)t] i (wo(t)) + A+ I (uso(tr))
I'(2— —t1) 7
— IR D (u(t)),

(3.5)

andv € {v € L'(J1,R) : v(t) € F(t,u(t)) for a.e.t € J1},vo € {v € L' (J1,R) : v(t) € F(t,usp(t)) for ae. t €
J1}. Clearly, Ny is convex valued, u.s.c..

We claim that there exists a positive number Ry such that Ny(Bgr,) € Bgr,, where Br, = {u €
PO Jullpe, < Ri}.

Let w € PC(Jy) and h € Ny(u). Thus there exists v € Sp,, such that

h(t) = w53 Ji (¢ = 5)° 1o(s)ds

L 7 . o
7%;&?&) o (b2 = 8)*=F~Tu(s)ds

B
_Fr(?;fz)it)l o (tr — 5)° =0~ Lug(s)ds

+ﬁ fgl (t1 — s)”"lvo(s)ds + ]117A7B(u).

Noticing ||u« o] < Ro, we have

In()]| < \If(||u||pc1>{<“?‘<iﬁ) + =4 f“iﬂfﬁ ) i pls)ds}
+W (Ro){ éa) + rF((j 53:1)) p(s dS} (3.6)
+I(2-p L2+|A|+L1+F(2 B)(ty — t1)% L.

Since lim @ = 0 by (A2), there exists a sufficiently large number R; > 0, such that

Tr——+00

Ry > W(Rl){((t?’(;)“ + DO D) [ p(s)ds}
t1
+HO(Ro){(757 + Tramimty) Jo p(s)ds}

+1(2 — B)t) Lo + |A| + L1 + T(2 — B)(t2 — t1)" Lo.

which together with (3.6) imply that
[[N1(u)||p < R1, when |ullpc, < Ri.

Similarly, we conclude that Ny (Bg, ) is equi-continuous on Jy. As a consequence of Lemma 3.2, we deduce
that N7 has a fixed point u. 1.
Part 3. Continue this process. We can define, for k = 2,3,--- ,m — 1,

h € PC(Jy) : ht) =ty J{ (t = )2 o(s)ds
T(2— —tr tet1 a—LF—
- (tk+1(itf))l—ﬁ l'gzaikﬁ)) t:+ (tk-‘,—l - S) B 1'U(S)d8

Ni(u) = Jrﬁ E ft_i (t; — 5)* tv;_1(s)ds (3.7)

-T2 - )Z (tfﬂ?atl 1) ft (t; — )P~ 1u;_1(s)ds
11 4,8(u ),t € Ji,
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and

h e PC( m) :h(t) = F(a) j; (t —s)* Lu(s)ds
i Lo f (1 —s)*toy(s)ds

tm T

+ ey ¢ t — ) ty;_1(s)ds
Nalt) =4 rarz- ) 8 %z;“ St (1= 9)°7F v (s)ds) (8:8)
=1
— I'(a a, —
_f_i:,ﬁ{r(of ))j;fl £ —5)* " lu(s)ds

_ (E*tz)lff (o) )ftl+ tigr — 8)® —B— 1vl(s)ds}

(tip1—t)1 =P T'(a—
‘HIm,A,B(U)vt € Jm,

where
- k _
Ieap(u) = =T(2—=6) 3 (ti —tio1)?Li(uwio1(t:))
i=1
k
+A—|—Z:1 Ii(usi-1(t:)) — 7&%1@;:)3’“)]“1( (tr+1)),
L ap(0) = —15ET(@ = 6) 30 (6 — 1) Tl (1) (8:9)
i=1
A(l— B(t—tm —t
+ 1(—1tnf) —+ it tiL ) —+ 11—75:7, ;Iz(u*yz,l(tz))
+iim i: (t(LiltWIl-‘rl(u* 1(ti4+1)),
and v € Spuy, v; € Spu, ;0 = 1,2,- — 1. Then we can similarly prove that Ng(k = 2,3,---,m)

possesses also a fixed point ., . The solution u of Problem (1.1)-(1.4) can be then defined by

u*70(t), t e [O,tl],
U*,l(t); te (tla t2]a
u(t) = .
U (), € (tm, 1].
Using the fact that F(-,-) € Pey,cp(R), F(t,-) is u.s.c. and Mazur’s lemma, by Ascoli’s theorem, we can
prove that the solution set of Problem (1.1)-(1.4) is compact. O
3.2 Nonconvex case

In this subsection we present two existence results for the problem (1.1)-(1.4) with nonconvex-valued
right-hand side. Let (X,d) be a metric space induced from the normed space (X, | - ||). Consider
Hq:P(X)x P(X)— Rt U{oo}, given by

H;(A,B) = max{supd(a,B),supd(A,b)},
achA beB
where d(a,B) = infpep d(a, b), d(A,b) = inf,cp d(a,b).
Then (Py,c(X), Hq) is a metric space and (P (X), Hy) is a generalized (complete) metric space (see
[32]).

Definition 3.6. A multi-valued operator G : X — P (X) is called
(a) ~v-Lipschitz if and only if there exists v > 0 such that

Ha(G(2), G(y)) < yd(z,y), for each z,y € X,

(b) a contraction if and only if it is y-Lipschitz with v < 1.
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Our considerations are based on the following fixed point theorem for contractive multi-valued oper-
ators given by Covitz and Nadler [10] (see also Deimling [13, Theorem 11.1]).

Lemma 3.4. Let (X,d) be a complete metric space. If G : X — Py (X) is a contraction, then Fix G # &.

Let us introduce the following hypotheses:
(B1) F: J xR — Py(R) satisfies
(a) t — F(t,u) is measurable for each u € R;
(b) the map t — Hy4(0, F(¢,0)) is integrable bounded.
(B2) There exist a function p € L(J,R) such that for a.e. t € J and all u,v € R,

Hd(F(ta u)’ F(tvv)) < p(t)|u - 'Ula
(B3) There exist constants ¢, 3 > 0 such that

[T (u1) — I (u2)| < splur — ual, [Ip(ur) — I (u2)| < Gplur — ual,
for each ui,us € R,

s

G+ S+ < L.

(B4) A = (riig + ra=grn) Pl + T2 = 9) 3G+

=1

Remark 3.1. The hypotheses (B4) can be improved by a weaker substitute in Theorem 3.2, and Theorem
4.1, respectively.

Theorem 3.2. Suppose that hypotheses (B1)-(B4) are satisfied. Then the problem (1.1)-(1.4) has at
least one solution.

Proof. The proof will be given in several steps.

Step 1. Let Ny be defined as (3.1) in the proof of Theorem 3.1. We show that Ny satisfies the
assumptions of Lemma 3.4.

Firstly, No(u) € P (PC(Jp)) for each u € PC(Jp). In fact, let {uy,}n>1 C No(u) such that u, — .
Then there exists z,, € S, such that

¢ ae - t1 o f—
un(t) = ﬁ Jo(t = 8)> ta,(s)ds — %t%g o (t1 = 8)*= P g, (s)ds
+A = PG (u(t), t € Jo.

Then {xz,} is integrably bounded. Since F(-,-) has closed values, let w(:) € F(-,0) be such that |w(t)| =
Hd(oa F(ta 0))
From (B1) we infer that for a.e. ¢ € Jy,

|20 ()] < 20 (t) — w(t)] + |w(t)]
< p®)|z()||pe, + Ha(0, F(£,0)) := M. (t),Yn € N,

that is,
n(t) € M. (t)B(0,1), a.e. t € Jo.

Since B(0,1) is compact in R, there exists a subsequence still denoted {z,} which converges to z.
Then the Lebesgue dominated convergence theorem implies that, as n — oo,

|z — x||zr — 0 and thus

~ t a— — t1 a—0B—
(t) =ty Jo (t — 5) La(s)ds — (=) 5w Jo' (= 9)* 0 a(s)ds

4 A= BCDET (u(ty)), t € Jo,

1
tl

proving that @ € Ny(u).
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Secondly, there exists v < 1 such that Hy(No(u), No(@)) < v|lu—@| pc,, for each u, @ € PC(Jp). Let
u, @ € PC(Jy) and h € No(u). Then there exists x(t) € F(t,u(t)), such that for each t € Jy
t o r(2— ¢ B
h(t) = ey Jo (¢ = )" "e(e)ds — 1= ot fo' (tn = 5)* " Ha(s)ds
+A— %h(u(ﬁl)),t € Jp.

From (B1) it follows that

Ha(F(t,u(t)), F(t,a(t))) < p(t)|u(t) —a(t)].
Hence there is y € F(t,u), such that

|z(t) — y| < p(t)|u(t) —a(t)],t € Jo.
Consider Uy : PC(Jy) — P(R), given by

Uo(t) = {y € R |z(t) — y| < p(t)|u(t) — a(t)|}-

Since the multi-valued operator Uo(t) = Uo(t) N F(t,a(t)) is measurable (see [11, Proposition II1.4]),
there exists a function Z(t), which is a measurable selection for Uy. So Z(t) € F(¢,u(t)) and

lz(t) — 2(t)] < p(t)|u(t) — a(t)],t € Jo.
We can define for each t € Jy

7 t a—1= — t1 a—0B—1=
h(t) = 15 Jo (t — 5) L3 (s)ds — =2 ot Jo' (= 9)* 70 a(s)ds

+A - %I_I(u(tl))at € Jo.

1

Therefore,

[h(t) = h(t)] < (55 + Faidy) Jo' p(s)[u(s) — a(s)|ds

+1(2 — At u(s) — a(s)]
< Au—1llpey-
Then
1A(t) = h(®)ll ey < Allu—allpc,.
By an analogous relation, obtained by interchanging the roles of u and , it follows that

Hd(NO(u)aNO(a)) < AHU - a”PCo'

So, Ny is a contraction. By Lemma 3.4, Ny has a fixed point u. o.

Step 2. Define Ni(u) as (3.4) in the proof of Theorem 3.1. We can prove that N;(u) satisfies also
the assumptions of Lemma 3.4. So N; has a fixed point . 1.

Continue this process. We can define Ny (u)(k = 2,3,---,m) as (3.7) (3.8) and similarly prove that
Ni(k=2,3,---,m) possesses also a fixed point u, ;. Then Problem (1.1)-(1.4) has a solution u defined

ueo(t), te[0,t],
u*71(t), t e (tla tQ]v

U (t), tE (tm, 1].

O
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For our another result in this subsection, we give some definitions and preliminary facts.

Definition 3.7. Let Y be a separable metric space and let N : Y — P(L([0,1],R)) be a multi-valued
operator. We say N has property (BC) if

(1) N is ls.c;

(2) N has nonempty closed and decomposable values.

Let F: [0,1] x R — P(R) be a multi-valued map with nonempty compact values. Assign to F the
multi-valued operator F : C([0,1],R) — P(L([0,1],R)) defined by F(u) = Sr,. The operator F is
called the Niemytzki operator associated with F'.

Definition 3.8. Let F : [0,1] x R — P(R) be a multi-valued map with nonempty compact values. We
say F is of lower semi-continuous type (l.s.c. type) if its associated Niemytzki operator F is lower semi-
continuous and has nonempty closed and decomposable values.

Next, we introduce a selection theorem due to Bressan and Colombo and a crucial lemma.

Theorem 3.3 ([5]). LetY be a separable metric space and let N :' Y — P(L'([0,1],R)) be a multi-valued
operator which has property (BC). Then N has a continuous selection, i.e. there exists a continuous
function (single-valued) g : Y — L'([0,1],R) such that §(y) € N(y) for every y € Y.

Lemma 3.5 ([13, 19]). Let F': J xR — P.p(R) be an integrably bounded multi-valued function satisfying,
in addition to (A2),
(B5) The function F : J X R — Pe,p(R) is such that

(a) (t,u) — F(t,u) is L ® B measurable
(b) u— F(t,u) is lower semi-continuous for a.e. t € J.

Then F is of lower semi-continuous type.

Now, we present another existence result for the problem (1.1)-(1.4) in the spirit of the nonlinear
alternative of Leray-Schauder type [24] for single-valued maps, combined with a selection theorem due
to Bressan and Colombo [5] for lower semi-continuous multi-valued maps with decomposable values.

Theorem 3.4. Assume that (A2), (A3) and (B5) hold, Then Problem (1.1)-(1.4) has at least one
solution.

Proof. From Lemma 3.5 and Theorem 3.3, there exists a continuous function f : PC(J) — L'(J,R), such
that f(u)(t) € F(u), for each v € PC(J) and a.e. t € J.
Consider the following impulsive fractional differential equation

CDo‘( = f(u)(t), a.eteJ,
()'t tk_lk(gk)k_1527 , M,
CDE.T( )|t7tk Ik( ( k = 1,2,' c,Mm,
u(0) +°DBu(0) = A, u(1 )+0Dﬁu(§) =B.

(3.10)

Clearly, if w € PC(J) is a solution of Problem (3.10), then w is a solution to Problem (1.1)-(1.4).
Problem (3.10) is then reformulated by Lemma 2.1 as a fixed point problem for some single-valued

operators. The remainder of the proof will be given in several steps.
Step 1. Define the single-valued operator Ny : PC(Jy) — PC(.Jy) by

No(u) = ﬁfé(t—s)a‘lf( >< > s
i s Jo' (= )P () (s)ds
+A — LG=g1 1(u(t1)),t € Jo.

Next, we will show that all Ny have a fixed point uy .
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Firstly, No is completely continuous. Indeed, from the continuity of f,I;, the Lebesgue dominated
convergence theorem and a —1 > 0,a— 3 —1 > 0, we have Ny is continuous. As in Theorem 3.1, we can
similarly show that Ny is completely continuous on any bounded subset.

Secondly, we show that there exists an open set Sy C PC(Jy) with no u = ANp(u) for any X € (0, 1)
and u € 05p.

Let u € PC(Jo) and u = ANp(u) for some 0 < A\ < 1. Thus for each t € .Jy, we have

lullpe, < [rs + %]ﬁ p(s)ds¥(|Jullpc,) (3.11)
+HA] +T(2 = B)t) Lo,

Since lim @ = 0 by (A2), there exists a sufficiently large number Ry > 0, such that

Tr——+00

Ro—1> W(Ro)[ps + F=25] [y p(s)ds
+A|+T(2 — )t} L.

which together with (3.11) imply that
[|No(u)||pc, < Ro — 1, when ||u||pc, < Rp.
Set
So ={u € C([0,t1],R) : ||u|lpc, < Ro}-

From the choice of Sy, there is no u € dSy such that u = ANg(u) for some A € (0,1). As a consequence
of the nonlinear alternative of Leray-Schauder type [24], we deduce that Ny has a fixed point u. o in Sp.
Step 2. Define the single-valued operator Ny : PC(J;) — PC(Jy) by

Ni(u) = w5 S5 (8 = 9)°~ 1 f(u)(s)ds
% F(EE tlg) 2 (tg — s)a—ﬁ—lf(u)(s)ds
+F(a fo (t1 — )"~ 1f(u* 0)(s)ds

(2~ B) prgy Jo (11— 5)° 75 f(ua 0)(s)ds
+Iy 4,8(u),t € J1,

where

Lioap(u) = -T(2 - Bt I (uwo(t)) + A+ I (uso(tr))
~ T D (u(t)).

(ta—t1)1=F

Similarly, N is completely continuous on any bounded subset. Let v € PC(J;) and u = AN (u) for some
0 < A < 1. Thus, we have

[ullpe, < W(IIuIIPcl){W{(;gF’ + “2;(5’;?;5;) ) {2 p(s)ds}
2Bt
+U(Ro){ (s + Fa=5t) Jy ' pls)ds} (3.12)
+T(2 = B)t] Ly + |A| + Ly +T(2 — B)(t2 — 1) Lo.

Asin Step 1, there exists a sufficiently large number R; > 0, such that | N1(u)||pc, < R1—1, when |Ju|pc, <
Rl. Set

S = {’LL € PC(Jl) : Hqucl < Rl}

From the choice of Sy, there is no u € 8S; such that u = ANy (u) for some A € (0,1). As a consequence
of the nonlinear alternative of Leray-Schauder type [24], we deduce that N; has a fixed point u, 1 in S7.
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Step 3. We continue this process. Define

)”“1f( )(s)ds

k
—1"(2—6)2:1 tr?oil 1’ ft (ti — 8)* P71 f(usio1)(s)ds

) thtt a—B—
7£tkfl(it5)l—[3 p(faikg)) t:+ (ths1 — 5) p 1f(“)(5)d5

Jr]Ik’A’B(u),tE J,k=2,3,---,m—1,

and
No(u) = w5 J,. (= 9) )L f (W) (8)ds = =i v Jo (U= )21 f(u)(s)ds
S L (= s )o)
~T(a)0(2 - 5) z Ut 11 (15— 5)2 9 funimr)(s)ds)
R A
-t P T(a=p) Jt, (tiv1 —s) flueg)(s)ds}
+moa,8(w), t € T,
where
Iya,8(u) = —T(2-5) lil(tz —tio1)P T (ui—1 ()
+A+ i:l Li(usi-1(ti)) — W%H( (tk+1)),
LA p(u) = — 11_7,5;1—‘(2 - B) ijl(ti —ti-1)P L (usi—1(t:))
AL ¢ Bty ot S L (t)
+L(tf§f%h+1(u* 1(tig1))-
By a similar argument to the one above, we can prove that all Nk(k = 2,3,---,m) have a fixed point

U k. Then Problem (1.1)-(1.4) has a solution v defined by

uxo(t), te€[0,t1],
U*J(t), te (tla t2]7

u(t) =

U (), tE (tm, 1].

4 Filippov’s Theorem

In this section, we will present a Filippov’s result for the Problem (1.1)-(1.4). For this, we list some
lemmas.

Lemma 4.1. [12] Consider an l.s.c. multi-valued map G : S — D and assume that ¢ : S — L'(J,R")
and ¢ : S — LY (J,RT) are continuous maps, and for every s € S, the set

H(s) = {u € G(s) : [u(t) — o(s)(t)] < (s)(t)}

is nonempty. Then the map H : S — D is l.s.c., and so it admits a continuous selection.
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Lemma 4.2. [25, Corollary 2.5.] Let G : [0,b] — Pcp(X) be a measurable multifunction and g : [0,0] — X
be a measurable function. Then there exists a measurable selection u of G such that

u(t) — g()] < d(g(t), G(2)).

Let A, B € R, and a continuous mapping g(-) : PC(J) — L'(J,R). Let x € PC(J), be a solution of
the impulsive differential problem with fractional order:

Dox(t) = g(x)(t), aetec Jt#t,k=1,2---,m, (4.1)
Aac(t)|t:tk :Ik(,f(fk)),k: 1,2,--- ,m, (42)
ADPx(t))i=t, = Lu(z(ty)), k=1,2,--- ,m, (4.3)
z(0) +°DPz(0) = A, z(1) +“DPx(¢) = B. (4.4)

By Lemma 2.1, 2 should satisfy (2.2) and (2.3) with respect to v(s) = g(x)(s)) and A, B submitted by
A, B.
Our main result in this section is contained in the following theorem.

Theorem 4.1. Assume that, in addition to (B2), (B3), (B4), (B5), the following also holds:

(H1) There exist a function v € L*(J,R") such that d(g(z)(t), F(t,z(t))) < v(t) a.e. t € J, where
x € PC(J) is a solution of the impulsive differential problem (4.1)-(4.4).
Then problem (1.1)-(1.4) has at least one solution u satisfying the estimates

INCEY:]
Pl 1 (g + ey

|z = ullpe, < TG Het =rope k=01 m -1, (4.5)
e — ullpe,, < EEHHin + <o,
and
|Du(t) — g(z) ()| < p(t)Hy +~(t), te Jpk=0,1,---,m, (4.6)
where
Hy = — 2o o ginl o 4o gy,

I(2— —
1-2( =5+ mme )Pl L1 —T (2= B)Sk 11

Hm:%m and g = |A— A| +|B — B|.

Proof. The proof will be given in four steps.

Step 1. We construct a sequence of functions {u, : n € N} which will be shown to converge to some
solution w. o, which is a fixed point of multi-valued operator Ny defined by (3.1).

Let fo(uo)(t) = g(x)(t)) and

uo(t) = w5 Jo (t = )27 foluo) (s)ds
_ t —B—
KB 81y — ) fofuo)(5)ds (@)
+A = L2 (2 (1)), t € o,
1

Let Gy : PC(Jo) — P(L*(Jo,R)) be given by
Gi(u) = {v € L'(Jo,R) : v(t) € F(t,u(t)), ae. t € Jo}.
and G, : PC(Jy) — P(L'(Jo,R)) be defined by

Gi(u) = {v € Gi(u) : Jult) — g(uo) ()] < p(O)]ul) —uo ()] + ()}
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Since t — F'(t,u(t)) is measurable multifunction, and from Lemma 4.2, there exists a function v; which
is a measurable selection of F'(¢,u(t)), such that for a.e. ¢ € Jy,

[v1(8) = g(uo)(®)] < d(g(uo)(t), F(£, u(t)))
< p(®)[u(t) — uo(t)] +~(1).

Then v, € él(u) # @. By Lemma 3.5, F is of lower semi-continuous type. Then u — G1(u) is L.s.c., and
has decomposable values. So u — G (u) is Ls.c. with decomposable values from PC/(.Jy) into P(PC/(Jp)).

Then from Lemma 4.1 and Theorem 3.3, there exists a continuous function f; : PC(Jo) — L'(Jo, R)
such that fi(u) € Gy (u) for all u € PC’(JO) From Theorem 3.4, the single-valued operator Ny defined
by

No(u) = ﬁfé(t—s)a‘lfl( >< >ds
i s Jo (= )7 fa(u)(s)ds
+A— %h(u( 1)),t € Jo,

has a fixed point which we denote by w;. Then

u(t) = why Jo (t = )2 fi(un) (s)ds
_F:E?*_f) ﬁ ftl (tr — )7 P71 f1(u)(s)ds
+A = LCZBIT (4 (11)), £ € Jo.

1

For every t € Jy, we have

u1(t) — uo(t)] < p(a) Jo 1£1( Ul (s) = fo(uo)(s)[ds

a2 [ 1 (un)(s) = foluo)(s)|ds

+A - 1‘_1|+F(2— t1|l_1(u1(t1)) I (uo(t))|

{F(a) + F(a ﬁ+1)}f s)|u1(s) — uo(s)|ds

+60 + {1y + F(F(Qﬁi1 }||7||L1+F(2— B)aalua(tr) = uolt)].

IN

Thus,
I(2—
Il (a5 + Tacge) +

T _
— (15 + mey) Pl — T2 - B

lur — woll ey <

Let Go : PC(Jo) — P(L'(Jo,R)) be given by
Ga(u) = {v e L' (Jo,R) : v(t) € F(t,u(t)), ae te o}
and Gy : PC(Jy) — P(L'(Jo,R)) be defined by
Ga(u)
={v e Ga(u) : [o(t) = fi(ur)(t)| < p(t)|u(t) — wr(t)] + p(t)|uo(t) — ur(t)[}.

Since t — F(t,u(t)) is measurable multifunction, and from Lemma 4.2, there exists a function vy which
is a measurable selection of F (¢, u(t)), such that for a.e. ¢t € Jy,

[ua (t) — fi(u1) ()] < d(fi(u)(t
< Ha(f1(u1)(t), F(t, u(
< p(t)]u(
< p(t)[u(
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Then vy € G (u) # @. By Lemma 3.5, F is of lower semi-continuous type. Then u — Ga(u) is l.s.c., and
has decomposable values. So u — G (u) is Ls.c. with decomposable values from PC/(.Jp) into P(PC/(Jp)).

Then from Lemma 4.1 and Theorem 3.3, there exists a continuous function fy : PC(Jo) — L'(Jo, R)
such that fo(u) € Ga(u) for all u € PC’(JO) From Theorem 3.4, the single-valued operator Ny defined
by

No(u) = ﬁfé(t—s)a‘lfa( >< >ds
SR i — ) ) ()
+A - %ﬁ(u( 1)),t € Jo,

has a fixed point which we denote by us. Then

’U,g(ﬁ) = 1a) fot t— S a_lfQ(UQ)( )dS
R o = 9 () ()
+A— %11(1@@ )),t e Jo.

1

For every t € Jy, we have

Jua(t) —ua ()] < 75 f5|f1 (u1)(s) — fz(u2 (s)lds

p(a 5+1) f |f1(u1)(s) = fa(u2)(s)|ds
+T(2 = B)t) |11 (ua (tr) — fl(u2(t1))|
{r +F”2 %}fo |u1 ) — us(s)|ds
+{r(a) + F(a ﬁ+1)}f s)|u1(s) — uo(s)|ds
+T(2 — B)G|ui(t1) — Uz(t1)|

IN

Thus,

r(2
Il 1 llpll 1 (e + 72520
(2
[1— (F(aﬁﬁ)npnﬁ r2-g&l?
r(2-p8)
N solllpll 1 (w5 + raegen)]

=ty + maeary)llpll 1 T 2=B)5 ]2

luz — u1lpc, <

Let
Gs(u) = {v € L'(Jy,R) : v(t) € F(t,u(t)), ae. t € Jo},

and
Gs (u)
= {v e Gs(u) : [v(t) = fa(u2) (V)] < p(t)]u(t) — uz(t)] + p(t)[ua(t) — ui ()]}
Arguing as we did for G, we can show that G is an l.s.c. with nonempty decomposable values. So there

exists a continuous selection f3(u) € Gs(u) for all u € PC(Jy). From Theorem 3.4, the single-valued
operator Ny defined by

No(u) = ﬁf(f(t—s)a‘%( >< >ds
A vy Jo' (b — )77 fa(u)(s)ds
+A - %ﬁ(u( 1)),t € Jo,

has a fixed point which we denote by us. Then

us(t) = gy Jo (t — )7 fa(us)(s)ds
— t1 a—pB—
~ S ray Jo (01— )77 s (us) (s)ds
+A— F(2 B)tl (U3(t )),t e Jo.

1
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For every t € Jy, we have

lua(t) —us(t)| < r‘t(c;) Iy f3(us)(s) = fa(uz)(s)|ds
Tty Jo ' | fa(us) () = faluz)(s)|ds
+I'(2 - )tﬁ|f1(u3(t1)) fl(u2(t1))|

{F(a) + F(a ﬁ+1)}f |U3 - u2(s)|ds
+{F (@) + F(FOE2 5@1)}[ |U1 — ua(s)|ds
+I'(2 = B)G |us(t1) — uz(t1)|-

IN

Thus,
IVl 1Pl 2 (i + eeetry)®
(& + mespny)llpll L1 —T (2= B)a]3
N solllpll 1 (g + riegry )12
[1— (i + Tes2)lIpl 1 —T(2=B)51]3

luz — us|lpc, <

Repeating the process, we can arrive at the bound

Il el (e + reae)™
= Tty rtat ol T 18
_T(2=p) yjn—-1 ( . )
solllpll 1 (viay + rapen)]

(5 + 7)ol 1 —T2=B)a ]

[un — un—1lPcq

By induction, suppose that (4.8) holds for some n. Let

Gni1(u) =
{v € Gnya(u) : |ot) = fulun)(®)] < p(B)|u(t) = un(®)] + p(8)|un(t) = un—1 ()]}

Since again G,y is an Ls.c. type multifunction, there exists a continuous function f,1(u) € Gpyi(u)
which allows us to define

O

Fgfﬁ r(a ) f (t1 = 8)* 7 frpa (unsa)(s)ds (4.9)
+A = BEZDET, (uy 44 (1)), 8 € o

Therefore, we have

r 3
IVl Pl (e + )"

Upt1 — Un||PCy < -
1 = unll Py (i + 22 lpll 1 —T (2= B)& ]+ (4.10)
n solllpll 1 (v + g " '

(1= (g + et )Pl 1 —T (2= )]+

Hence, (4.8) holds for all n € N. And so, by (B4), {u,} is a Cauchy sequence in PC(Jy), converging
uniformly to a function u, o € PC(Jy). Moreover, from the definition of G,,n € N, we have, for a.e.
t e Jy,

a1 (ng1)(8) = fo(un) (8)] < p()tnta(8) — un(t)] + p()[un(t) = un—1(t)]-

Therefore, for almost every t € Jo, {fn(un)(t) : n € N} is also a Cauchy sequence in R and converges
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almost everywhere to some measurable function f(-) in R. Moreover, since fy = g, we have

|fa(un) ()] < | fal(un)(t) = frn—1(un—1)(t)]
Hfr—1(un—1)(#) = frn—2(un—2)(t)|
o fr(un) (8) = folwo)(®)] + [ fo(uo)(t)]

<2 ép(muk(t) — w1 ()] + [ foluo)(B)] + (1) (411)
< 2(t) gz fur(t) — ux—1(8)] + lg(@) ()] + 2(t)
< op(t)— (et e )] (1),

1-2(ry +W)HPHL1 r(2-p)a

From (4.11) and the Lebesgue dominated convergence theorem, we conclude that f,(u,) converges to
f(uyp) in L*(Jo,R). Passing to the limit in (4.9), the function

weo(t) = 157 Jo (t = 9)°7 (e 0)(s)ds

— t1 a—03—
St i = 90 () (5)d

+A - %E(U*,o(tl))vt €Jo
1

is a fixed point of multi-valued operator Ny defined by (3.1).
Next, we give estimate for ||z — u. ol pc,- We have

j2(t) — weo(t)] < F(la)f(flg (s) — f(u*o)(8>|d5

i Jo ' l9(@)(s) = f(u0)(s)lds
+|A A|+F(2 6>|11(( )) Il(u*o(tl))l
< (rtay + i) Jo 1 n(un)(5) = F(ta0)(5)]ds
+(F(a) + FF(25€_)1) f |f0 UO fn(un (S)|d5

+0 + I'(2 = B)G1 |ux,0(t1) — x(t1)|,t € Jo.

As n — oo, we arrive at

2071l 1 llpll 1 (g + e ) 24250 11l 11 (g + )
— Uy <
e = wollpco < G B 2y + =l g1 -T2~ 5)51) (4.12)
<
+ (17F(20—B)<*1) :
Step 2. Let fo(u’) = g and set
t o
u(t) = w3 Ji, (t =) 1fo( 0)(s)ds
I"(2 t—t1) a—
&F&a 0 [ (b2 — )0 fo(uO)(s)ds )
r(2-8)t — .
U -5
+ﬁ fol 1 —8)% tug(s)ds —l—HLAB(uO),t e Ji,
where vo(t) € F(t, ux0(t)) for a.e. t € J; and
La,(0) = —T(2 = B)t] I (ur0(t1)) + A+ I (uso(t1)) L14
_LC=Bt) 1 (40 (1,)) (4.14)
(ta—t1)1-F )

As in Step 1, let the multi-valued map Gy : PC(J1) — P(L'(J1,R)) be given by

Gi(u) = {v e L'(J1,R) : v(t) € F(t,u(t), ae. t € J}.
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and G, : PC(Jy) — P(L'(J1,R)) be defined by
Gr(u) = {v € Gi(u) : Jo(t) — g(uo) ()] < p(B)[u(t) — uo(H)] + 7 (1)}

Then there exists a continuous selection f1(u) € él(u) for all u € PC;. Define

ul(t) = ﬁftﬂ(t—s)“‘lfl( 1)(s)ds

m%—lﬁh&a% *(ty — 5) P fi(u) (s)ds

_Te-p)t} a—B—
F&a% J —s> 9Ly (s)ds

F(a) f (t1 — 8)* Lg(s)ds + ﬁLA,B(ul),t e Ji.

Next define Gy : PC; — P(L(J1,R)) by
Go(u) = {v € L'(J1,R) : v(t) € F(t,u(t)), ae. t € Ji}.

and

ég(’u)
— v e Ga(w) : [o(0) — (@) (@)] < p(Oald) — u'@O)] + p(O)[(0) — @l ([D)]}.

It has a continuous selection fa(u) € Go(u) for all u € PC(.J;). Repeating the process of selection as in
Step 1, we can define by induction a sequence of multi-valued maps

én-ﬁ-l(u) =
{v € Gna(u) : [o(t) = fu(u) (@) < p()|u(t) —u(t)| + p(t)|u(t) — w1 (1)}

Since again Gy41 is an Ls.c. type multifunction, there exists a continuous function frn+1(w) € Gpya(uw)
which allows us to define

w1 = w5 (- S)”“lfn+1( "+1>< )ds

R L1~ 0 o

_F(Q ﬁ)t J" _ a £—1 0( )dS

F(a >
+F (@) fO tl — S)a 1 (S)dS +H11A13(un+1),t e Ji.

(4.15)

Therefore, we can easily prove that

re—p) 1
[untt — un < IVl el (st + rramrn) "

1= [1—<F5a>+%>npnm T

g0[”?”[‘1 (Feay r(a) +Fa—Er0 r(a g+1) )]n

JF
[1— (g5 + et )Pl 1 —T (2= B)S] 1

Then, we have constructed a sequence of functions {u™ : n € N}. As in Step 1, we can show that {u"} is
a Cauchy sequence converging uniformly to some u,; € PC, a fixed point of multi-valued operator Ny
defined by (3.4) and that f,(u™) converges to f(us 1) in L*(J1,R). Moreover,

T 2071l 1Pl 1 (i + ey )+ 250 9l 1 (g + ey )
- LT (-T(2-8)8) (-2 + e ) el 1 —T(2—B)%) (4.16)

+ (1—F(<2()—ﬁ)§2 :

Step 3. Continuing this process, we can arrive at the functions f(u.x) € L'(Ji,R), usr €
PC(Jig)(k = 2,3,---,m). And here u, j is a fixed point of multi-valued operator N defined by (3.7)
and (3.8), respectively. Similarly, the following estimates are easily obtained

T < 2lualpllo (g + riagen ) +2o0llpl o (g + wasen)
- k|| PC, > —
- * (1-r(2- ﬁ)ckm(l 2<F<a>+rﬁf—[ﬁl)>npnm 0(2—8)%k11) (4.17)
E=2,3---,m—1,

+ (1—F(2—5)€k+1)’
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and

< el 2l
“ = T(a) - 4pl ()

Step 4. Summarizing, we deduce that a solution u of Problem (1.1)-(1.4) can be defined as

|z — vsmllPo + <o) + <o- (4.18)

uxo(t), te(0,t1],
U*,l(t); te (tla t2]a

U (), tE (tm, 1].

From (4.12), (4.16), (4.17) and (4.18), we know that the estimates (4.5) hold. Moreover, the function
u(t) defined above is a solution of the following impulsive boundary value problem for fractional order
differential equation

Deu(t) = f(u)(t), aete Jt#tpk=12---,m,
Au(t)|i=t, = Ii(ulty)), k=1,2,---,m,

AD u(b)] =g, = Te(ult),k = 1,2, ,m,

u(0) +DPu(0) = A, u(1) +“DPu(¢) = B,

where f(u)(t) = f(uwr)(t),t € g, k=0,1,--- ,m. From Step 1 to 3, we have that

[Du(t) — g(x) ()] < [£(w)(t) = foluo)(t)]
< f()(@) = fr(un) (O] + [ fn(un) () = foluo)(®)|
< [F)(t) = fulun) (0]
(
Il

(4.19)

+ Z [ fie (k) () = fr1(ur—1)(t)] (4.20)
If( )( ) = fn(un)(®)]
+2p(t) k; |uk(t) — ur—1(8)] +~(1).

IN

Passing to the limit as n — oo, we obtain
[Du(t) — g(2)(t))] <2p(t) kzl |uk () = up—1(8)] +(2). (4.21)
Using (4.10) and (4.21), we get for t € Jy that

(2

Doy (t) — 2P(t)(||V”Ll(r(a)+m)+§0) ny 4.99
Deult) - (o) 0)] <o g D ) (122

Similarly, for t € Jg, k=1,2,--- ,m — 1,

re-s
Dea(t) - g(o) )] < — 2O e 0 (4.23)

-2( r(la) +W)HPHL1 T(2—B)3k+1

and for t € J,,,
Do) — alx 2p(t)(2[|v][ . + T'(a)s0)
[Du(t) = gla)(0)] < I

The inequalities (4.22), (4.23) and (4.24) imply that the estimate (4.6) valid. The proof is completed. [

+ (). (4.24)
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